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Low Density Supersonic Decelerator (LDSD) project's Supersonic Flight Dynamics Tests (SFDT)
June 28, 2014 (SFDT 1), and June 8, 2015 (SFDT 2)
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Disksail Parachute Ringsail Parachute
Motivation (LDSD: ~ 30 m diameter parachute)
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What went wrong?

Credit: O’Farrell et al., AIAA-2016-3242.

• SFDT-1 failed at 9,000 lbf
– 11% of flight limit load
– Analytically showed positive

margins to a load of 80,000 lbf
• SFDT-2 failed at 79,000 lbf

– 99% of flight limit load
– Ringsail analytically showed positive 

margins to a load of 166,000 lb
• FLL should be the load at which 

the parachute can safely survive 
inflation, not its ultimate capability

• Both parachutes were subsonically
tested to > 121,000 lbf!

New failure mode observed during 
supersonic deployment.
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• Objective: Develop a computational framework to 
accurately model supersonic parachute deployment that 
could be used as a design tool for future space missions
– Mars-relevant supersonic tests are time consuming and 

expensive
– Currently not feasible to use tests as part of the design process, 

only for validation
• Highly nonlinear Fluid/Structure Interaction (FSI) 

problem with large scale deformations
• Rigorous Validation and Verification program is needed 

before results can be used for design or validation efforts
• Stanford/JPL Collaboration
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Overview
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• Pros:
– Allows large structural motion or deformation
– Simplifies mesh generation procedure

• Cons:
– Difficult to create a mesh that will track a boundary layer without 

Adaptive Mesh Refinement (AMR)
– Complicated numerical treatment required for the fluid/structure 

interface
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Embedded Boundary Method

Image Credit: Raunak Borker

Huang et al., JCP, 2018
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Embedded Boundary Method
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Embedded Boundary Method

Image Credit: Raunak Borker

Huang et al., JCP, 2018
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Embedded Surface Numerical Framework

• Finite Volume method with Exact two-material Riemann 
Problems (FIVER)
– Huang et al., JCP, 2018, Main et al., JCP, 2017, etc.

• Analytical Riemann problem at fluid/structure interface

ill-conditioning
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• Supersonic parachute deployment specific updates
– AMR (cite AMR paper)

• Distance to surface
• Hessian criteria
• Intersecting edges

– Porous surface modeling
• Compared to DNS and experimental data

– Smooth forces with embedded framework
– Self-contact
– Minor fixes to run on 1000+ cores

• Simulation Focus
– Preliminary investigation of drag force sensitivity to LES/RANS 

modeling
– Effect of suspension lines
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Recent Code Additions and Focus
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• AERO Suite
– Entry vehicle – embedded surface
– Triple bridle, riser, suspension lines, canopy – embedded surface
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System Level Simulation Plan

MSL Parachute Schematic (Cruz et al., AIAA 2013-1250) 
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Original Freestream
• Gas: CO2
• Density = 
• Mach Number = 
• Pressure = 
• Temperature = 
• Capsule Re ~= 
• Viscosity – Sutherland’s 

law
• LES -
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Free Stream Conditions
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Updated Freestream
• Gas: CO2
• Density = 
• Mach Number = 
• Pressure = 
• Temperature = 
• Capsule Re ~= 
• Viscosity – Sutherland’s 

law and bulk viscosity
• LES -
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Preliminary Results: Updated Initial Conditions
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Preliminary Results: RANS vs LES
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Preliminary Results: RANS vs LES
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AMR for Suspension Lines
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AMR for Suspension Lines
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Preliminary Results: Effect of Suspension Lines
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Static Structure LES Simulations
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• Sensitivity of results to 
initial parachute model
– Geometry
– Pre-stressed or zero stress-

state
• Time required for LES 

simulation
• Resolution requirements 

(fluid and structure)
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Ongoing Work
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Preliminary FSI Simulations
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Preliminary FSI Simulations
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ASPIRE Supersonic Parachute Flight Test, Oct. 4, 2017
https://www.jpl.nasa.gov/video/details.php?id=1507



• Recent works have highlighted discrepencies between 
numerical simulations and experimental data for compressible 
capsule flow (Murman et al., AIAA-2015-1930)
– Influence of turbulence models, surface roughness, mesh 

refinement, Riemann solver, etc.
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Capsule Simulation

Images taken from Murman et al., AIAA 2015-1930. From left to right: experimental set-up in NASA Ames 11ft 
transonic tunnel, comparison between numerical and experimental results, and CFD surface pressure results.
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• Work in progress
• Good candidate for new AERO-F AMR capabilities (Borker et al., AIAA-2018-

1072)
• Parachute deployment sensitivities to wake properties is a large unknown

2/8/21 25

Capsule Preliminary Results

Surface geometry used in AIAA-2015-1930 
generously provided by Scott Murman Preliminary Simulation
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